

Flavor tagging tools: flavor tagging at e+e- facilities

Tomohiko Tanabe (The University of Tokyo)
Taikan Suehara (Tohoku University)

Snowmass Energy Frontier Workshop, BNL April 4, 2013

Introduction

- Flavor tagging is crucial in e+e- physics
 - e.g. h→bb/cc, t→bW, H⁰A⁰→bbbb
- Key ideas: vertex finding over the whole event
 - Secondary & tertiary vertex reconstruction made possible by low background environment & excellent position resolution of the detectors
- Challenges:
 - environment with many jets
 - e.g. e+e-→tth→bqqbqqbb (8 jets)
- Tools developed for physics studies at ILC / CLIC:
 - LCFIVertex [NIM A 610 573 (2009)]
 - _ LCF|+ [https://confluence.slac.stanford.edu/display/ilc/LCFIPlus]
 - developed for the latest physics studies for the ILC TDR using full detector simulation

Detector Requirements

Vertex Detector (ILD / SiD)				
Inner radius	15 / 14 mm			
Outer radius	60 mm			
Impact parameter resolution	< 5 µm (high mom.)			

Tracker: Track selection / V⁰ rejection

Calorimeters: Lepton ID / PFA

Track impact parameter resolution goal at ILC:

$$\sigma_{r\phi} = 5 \ \mu \text{m} \oplus \frac{10}{p(\text{GeV}) \sin^{3/2} \theta} \ \mu \text{m}.$$

Ensures good track measurement and flavor tagging.

Input variables

Input variables use information from

- jets: tracks, neutrals
- tracks: impact parameters & covariance, lepton ID
- vertex: position, direction, momentum, mass

TMVA multiclass BDT with gradient boost in 3 classes (b, c, uds) and 4 categories

Vertex finder performance

Zhh → qqbbbb	Primary	b hadron	c hadron	other
# all reco. tracks	67575	12912	15246	4087
# tracks in vertex	617	8717	10529	358

Example

Performance

Z→qq, 91.2 GeV c background uds background

Performance: vvH at 1 TeV

Hiroaki Ono, vvH at 1 TeV, H→bb,cc,gg (ILD) *Distributions used for template fits.*

c-tagging capabilities are also demonstrated.

Performance: ZHH at 500 GeV

Junping Tian, e+e− → ZHH at 500 GeV (ILD)

Performance: ttH at 1 TeV

Performance demonstrated for:

1) Different detector geometry, and 2) Higher jet energies

Summary

- Flavor tagging crucial for e+e- physics studies
- Current algorithm rather simplistic approach: input variables based on tracks, vertices → multivariate analysis
- Performance demonstrated with full simulation studies under realistic conditions for various jet energies
- But still a lot to do:
 - Improve vertex finding, jet finding, lepton ID
 - Systematic uncertainties to be evaluated with control samples e.g. e+e- → ZZ/ZH, e+e- → qq

Extra Slides

Implementation

LCFI+ Data

Tracks, Neutrals, Vertices, Jets, ...

- Automatic type identification (Allow one name with multiple types)
- Automatic creation/deletion (using ROOT class dictionary)

Algorithms

Vertex Finder, Jet Finder, Flavor Tagger, ...

 Parameters class used for type-safe configuration

- Automatic conversion from LCIO to Icfiplus classes
- Conversion to LCIO invoked by processor

configure

LcfiplusProcessor

Marlin processor

- Marlin parameters control algorithms
- LCIO I/O configuration

Figure 4.1.1: (Left) Average number of hits for simulated charged particle tracks as a function of polar angle. (Right) Average total radiation length of the material in the tracking detectors as a function of polar angle.

Performance

Vertex Finder

Motivated by *vertex-first*, *jet-second* approach, a high purity vertex finder was developed. Compared to LCFIVertex, the LCFI+ vertex finder gives:

- fewer rate of primary tracks
- better efficiency of secondary tracks
- improved V⁰ rejection

<u>in realistic multi-jet environment</u>

(a) $ZHH \rightarrow qqbbbb$	Track origin			
(a) $ZHH \rightarrow qqbbbb$	Primary	b hadron	c hadron	Other
Number of all reconstructed tracks	67575	12912	15246	4087
Number of tracks used by ZVTOP	1162	8534	10404	999
in good vertices	-	8248	10103	-
Number of tracks used by our original vertex finder	617	8717	10529	358
in good vertices	-	8551	10333	-
(b) tt > bbases				
(b) tt > bhagag		Track o	rigin	
(b) $t\bar{t} \to bbqqqq$	Primary	Track o	rigin c hadron	Other
(b) $t\bar{t} \rightarrow bbqqqq$ Number of all reconstructed tracks	Primary 74504			Other 4219
	-	b hadron	c hadron	
Number of all reconstructed tracks	74504	<i>b</i> hadron 8945	c hadron 12602	4219
Number of all reconstructed tracks Number of tracks used by ZVTOP	74504	<i>b</i> hadron 8945 5999	c hadron 12602 8353	4219

Good performance is obtained in reasonable computing time without the help of jet finders.